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The paper describes an investigation into the use of lubrication models on thin film flow. Power law, Ellis,
and Carreau models are compared for free surface flow and flow within a channel. It is shown that the Ellis law
�or a slight modification� can give very similar viscosity curves to Carreau. The three models are then com-
pared for thin film flow with a constant height free surface. For low shear rates the power law model can give
very inaccurate predictions. Having shown Carreau and Ellis may produce similar results we then study flow
in a channel for Ellis and power law fluids. Again the power law can give inaccurate results due to the high
viscosity around the turning point for the velocity. Finally, we briefly describe the modification to include
surface tension in the free surface flow model.
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I. INTRODUCTION

The flow of a thin layer of Newtonian fluid has been the
subject of intense investigation for many years. One reason
for this interest is the wide variety of applications of such
flows, both natural and industrial �see �1,2� for example�.
However, there are many practical applications where the
fluid is non-Newtonian. They may exhibit a nonlinear stress-
strain relation or have a nonzero yield stress. In this paper we
will focus on fluids with a nonlinear stress-strain relation.
Most fluids that do not have a yield stress exhibit Newtonian
behavior at very high and very low shear rates and are shear
thinning at moderate shear rates. Most polymeric fluids fit
this description, as do certain suspensions �3–5�. These fluids
are often referred to as having structural viscosity since the
change in viscosity may be associated with a breakdown of
the structure which subsequently recovers upon removal of
the stress. Mud, blood, ice, and fluidized beds have also been
modeled as having some form of structural viscosity �6–9�.

In general polymeric fluids show four distinct viscosity
regimes when subject to shear stress. At very low shear rates
they behave as a Newtonian fluid; as the shear increases the
behavior starts to become nonlinear, after a further increase it
moves into the regime where the viscosity can be modeled
by a power law relation. Finally, at very high shear rates the
behavior becomes Newtonian once more �3,5,10�.

In many industrial applications, such as injection molding
or extrusion, fluids are subjected to high shear rates �in the
range �1,104� s−1 �4�� and so are well described by the power
law model. However, when a fluid is subject to a range of
shears including very low values, a different model must be
used. Obviously, there are many of these, however, com-
monly used ones include Carreau, Cross, and Ellis �see �3,4�
for example�. The power law, Carreau, and Cross models
express viscosity in terms of shear rate and have two, four,
and four free parameters, respectively. The Ellis model ex-
presses viscosity in terms of shear stress and has three pa-
rameters. All three of Carreau, Cross, and Ellis can describe
the low shear Newtonian plateau. Carreau and Cross can also
model the high shear Newtonian region. However, the high
shear viscosity is usually significantly less than the low shear
value and is frequently neglected, hence, the final three mod-

els, in practice, usually involve the same number of free
parameters.

Despite the fact that it is well known that the power law
model is only meant to apply at large shear rates, it is fre-
quently used for flows where the shear stress becomes zero.
In this limit the power law model predicts infinite fluid vis-
cosity. In particular it has been used in studies of free surface
flow �subject to a zero shear boundary condition� �9,11–21�,
hence the viscosity becomes infinite at the free surface. In
pipe flows and metered coating the velocity is fixed at the
walls and generally reaches a maximum within the flow,
hence the velocity gradient �and therefore shear stress� be-
comes zero within the flow �22–24�. Other objections to the
power law model include the fact that one of the constants
has rather strange dimensions �dependent on the other con-
stant� and the constants determined from one flow system
may be different from those obtained from another flow sys-
tem, with the same fluid �10�. Presumably the main reason
for retaining the power law model for low shears is that it
leads to an attractive mathematical model. This is pointed out
in �4, pp. 266, 267� as follows, “Although the limitations of
�the power law model� are well known, it continues to be
used as a starting point for theoreticians to keep the math-
ematical complexity at a tractable level.” They go on to point
out that the power law model has been demonstrated to be
inadequate when modeling creeping flow around a rigid
sphere. In Matsuhisa and Bird �10� a number of applications
where the power law model has proved inadequate are de-
tailed.

Spin coating is a classic example where the coating fluids
are typically non-Newtonian. The standard Newtonian solu-
tion for fluid flow on a spinning disk was given by Emslie et
al. �25�. Their model had a dominant balance between cen-
trifugal driven motion and viscous resistance of the fluid.
One conclusion they drew was that an initially uniform layer
remained uniform after centrifugation. Acrivos et al. �11�
extended this work to include power law behavior of the
fluid and demonstrated that a uniform film loses its unifor-
mity. In fact the results showed that fluid near the center
remained stationary and so formed a peak �contrary to ex-
perimental evidence�. The amount of stuck fluid increased as
the power law exponent n was decreased, an obvious conse-
quence of the viscosity tending to infinity. Subsequently,
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Jenekhe and Schuldt �26� demonstrated that this behavior
was a consequence of applying the power law model at low
shear rates. They solved the problem numerically, using a
Carreau fluid model, and showed that a uniform film de-
creased almost uniformly. They concluded that power law
fluids were unsuitable for modeling axisymmetric free sur-
face flows.

So, there is clear evidence that power law fluids are inap-
propriate for certain low shear rate flows. It therefore seems
reasonable to investigate whether this type of model can pro-
vide physically realistic results for thin film free surface
flows on a fixed substrate.

In the following work we compare power law, Carreau,
and Ellis models. We commence with an investigation of
gravity driven flow down an inclined plane, where the free
surface has a fixed height. This simple situation means that
we can neglect any modulus signs that appear in the consti-
tutive equations �since the velocity gradient is always posi-
tive� and we can therefore focus on how well each model
works and under what conditions it is appropriate to use the
model. We neglect the Cross model since this gives very
similar results to Carreau.

The advantage of the Ellis model over Carreau is that, in
the case of a film with one free surface, an explicit expres-
sion for the film height may be obtained. For flow in a chan-
nel a relation between the flux and pressure gradient may be
obtained. Hence analytical progress may be made with the
Ellis model. One objection to the Ellis model is that for
certain fluids it may underpredict the viscosity in the low
shear transition region from power law to Newtonian behav-
ior �27,28�. However, for many fluids it does show good
agreement, within 5% of experimental data, for over three
decades of shear stress variation �10�. Throughout this paper
we will assume that the Carreau model provides the best fit
to experimental data. This may not be the case; the Ellis
model may be better for certain fluids, however we do re-
quire a benchmark model for comparison purposes.

In the following section we demonstrate that the Ellis
model �or a slight variant� and the Carreau model can be
made to give virtually identical results for a wide range of
shear rates for all the fluids examined, hence in subsequent
sections we neglect the Carreau model. The power law
model is shown to work well for relatively thick films, but
results diverge as the film becomes very thin. In the final
section we briefly demonstrate how the equations may be
modified to deal with thin film flow including the effect of
surface tension.

II. VISCOSITY MODELS

In this section we describe the use of the three viscosity
laws used in the subsequent analysis. We then go on to com-
pare the models for five different fluids.

A. Power law

The standard power law model describes the viscosity by

�p = K��̇�np−1, �1�

where �̇ is the shear rate. In the case of two-dimensional thin
film flow, as will be considered in the following analysis, we

may set �̇=uz. If np�1, the fluid is pseudoplastic or shear
thinning. If np�1, it is dilatant or shear thickening. Obvi-
ously, when np�1, as �̇→0 the viscosity tends to infinity.
For np�1 the viscosity tends to zero as �̇→0.

B. Carreau model

The Carreau model is typically written in terms of four
parameters

�c = �� + ��0 − ����1 + �2�̇2��nc−1�/2, �2�

where �0,�� are the limiting viscosities at high and low
shear rates. The high shear viscosity is generally associated
with a breakdown of the fluid and is frequently set to zero,
see �29�, �4, p. 267�. When a value for �� is quoted it is
always significantly less that �0; for example, for 7% alumi-
num soap in decalin and m-cresol �hereafter referred to as
aluminum soap� ��=0.01 Pa s��0 /900 �3�, and for blood
��=0.0345��0 /16 �7�. In the following we will follow
standard practice and neglect ��. The zero shear viscosity,
for solutions, is usually taken as the viscosity of the carrier
fluid.

In general the Cross model, which also has four param-
eters, yields very similar results to the Carreau model.

C. Ellis model

The Ellis model is written in terms of shear stress

1

�
=

1

�0
�1 + � �

�1/2
�	−1	 , �3�

where �0 is the viscosity at zero shear and �1/2 is the shear
stress at which the viscosity is �0 /2. This model cannot pre-
dict the second Newtonian plateau, however, as stated this is
usually not of interest and particularly not for this investiga-
tion where it is the low shear region that is of primary inter-
est.

D. Experimental data

In Table I we give examples of the parameters for each
model for five fluids. The data show a wide spread in the
viscosities at zero shear, from 4
106 to 0.056 Pa s. There is
also a good variation in the experimental data provided, i.e.,
some authors quote only Carreau parameters and we infer the
others or vice versa.

The power law, Carreau, and Ellis parameters for molten
polystyrene are taken from �4, pp. 966–968�. Only the Car-
reau parameters for 7% aluminum soap in decalin and
m-cresol are given in �3, p. 210�. We obtain the power law
parameters by considering just the shear thinning region,
then we can set np=nc and K=�0�n−1; these are the values
shown in the table. The Ellis model parameters are obtained
by curve fitting. However, this is not a difficult task. Al-
though the model has three parameters, two are simple to
obtain. The viscosity �0 is the value at zero shear and comes
from the Carreau data. The shear stress, �1/2, at which �
=�0 /2 is simply �1/2=�0uz1/2 /2 where uz1/2 is the shear rate
where �=�0 /2. Since the Carreau parameters have already
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been adjusted to provide a good fit to the data, we take uz1/2
from the Carreau model. Hence we are only left with one
parameter, 	, to adjust in the Ellis model. This is done by a
bisection method to match the slopes in the transition region.
The third data set is taken from experimental results reported
by Carreau et al. ��30�, Fig. 7� on 3% solutions of polyeth-
ylene oxide in water. The experimental data clearly show the
Newtonian plateau for �̇�1; for �̇�5 the data approximate
very well to a straight line �both axes are logarithmic�. The
power law and Ellis parameters are obtained as described
above.

Bird �3, pp. 209–212� gives power law and Ellis model
parameters for aqueous solutions of 0.5% hydroxyethylcellu-
lose; this provides the fourth data set. The Carreau param-
eters are obtained by taking �0 from the Ellis data, nc from
the power law data, and �= �K /�0�1/�n−1�. The final data set is
for blood. Many models have been proposed to describe the
rheology of blood, yet none are universally accepted. The
experimental data in Chien �31� appear to indicate a classical
structural viscosity model. The power law and Carreau pa-
rameters are taken from �7�, which also gives parameters for
a range of other models �but not Ellis�. The Ellis parameter
values are obtained from the Carreau parameters.

Figures 1�a�–1�d� show a comparison of the viscosities
predicted by the above models and parameter values for
polystyrene, aluminum soap, hydroxyethylcellulose, and
blood. The solid line is the Ellis model, the dashed line Car-
reau, and the dash-dot line power law. We omit polyethylene
oxide to save space and also because the correspondence
between models is similar to that of aluminum soap, i.e.,
they all agree well in the shear thinning region and the Ellis
and Carreau models only have a slight difference in the tran-
sition to the Newtonian plateau.

All the figures show that for low shear rates the power
law model significantly overpredicts the viscosity. Figure
1�a� shows the viscosity variation for polystyrene. In this
case all parameter values are taken from the literature and,
while the agreement is good for low shear, uz� �0.06,1�, all
the curves have a different slope for high shear and conse-
quently diverge. Figures 1�b� and 1�c� both show very good
agreement with Ellis and Carreau models; obviously this is
expected since for aluminum soap the Ellis parameters have
been chosen to obtain good agreement, while for hydroxy-
ethylcellulose the Carreau parameters have been chosen to
match the Ellis model. Only in the transition from Newton-
ian to shear thinning is there a slight difference between the
models. For high shear rates the power law model agrees

well in both cases, since we have chosen nc=np. In Fig. 1�d�
the Carreau and power law models show significantly differ-
ent results, which may be a consequence of different experi-
mental conditions �recall the power law model may give dif-
ferent parameter values depending on the experiment �10��.
In �7� it is stated that the Carreau model fits experimental
data quite well, so the Ellis model has therefore been chosen
to match the Carreau model.

III. FREE SURFACE FLOW OF A FLAT FILM

We consider a film of constant thickness h flowing down
a plane inclined at angle � to the horizontal. The free surface
is stress free �=�uz=0 and a no-slip condition applies on the
substrate. The lubrication approximation to the two-
dimensional Navier-Stokes equations gives a leading order
balance

− px +
��

�z
+ �g sin � = 0, − pz − �g cos � = 0.

This may be integrated subject to the stress-free condition on
the free surface. Since the free surface has a constant height
we can set p= pa, where pa is the ambient pressure at z=h.
We find

� = − �g sin ��z − h� , �4a�

p = pa − �g cos ��z − h� , �4b�

where we have used the fact that px=0 to write the first
equation. To proceed further we need to specify a relation
between shear stress and shear rate and so must consider the
different fluid models. Since our interest lies with the veloc-
ity profiles we neglect the pressure expression from now on.
Further, for free surface purely gravity-driven flow the veloc-
ity gradient uz is positive everywhere, hence we can neglect
the modulus sign in Eqs. �1� and �3�.

A. Power law fluid

Substituting for � from Eq. �1� we find

uz
np = Ap�h − z�, Ap =

�g sin �

K
. �5�

This integrates immediately, subject to the no-slip condition,
to give the velocity

TABLE I. Power law, Carreau, and Ellis parameter values for various fluids.

Material

Power law Carreau fluid Ellis fluid

np K nc � �0 	 �1/2

Polystyrene 0.39 3.5
105 0.4 46.4 4
106 3.2 1.26
105

Aluminum soap nc 68.07 0.2 1.41 89.6 5.3 69.19

Polyethylene oxide nc 13.787 0.4133 1.1876 15.25 2.7 19.918

Hydroxylethycellulose 0.5088 0.84 np 0.0664 0.22 2.073 4.93

Blood 0.6 0.035 0.3568 3.313 0.056 3.4 0.026
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u = Ap
1/np

np

np + 1
�h�np+1�/np − �h − z��np+1�/np� . �6�

Perazzo and Gratton �20,21� consider the flow of a thin
layer of power law fluid down a slope. Equation �6� corre-
sponds to their equation with a constant height �see �21, Eq.
13��.

B. Carreau fluid

For the Carreau fluid the velocity in the x direction is
determined by

�1 + �2uz
2��nc−1�/2uz = Ac�h − z�, Ac =

�g sin �

�0
. �7�

This cannot be integrated �analytically� further, as in the
power law case, and must be treated as a numerical problem.

C. Ellis fluid

Equation �4� provides an expression for � throughout the
film. We may use this to replace � in Eq. �3�. It then follows
that

uz = Ac�h − z�
1 + �Ae�h − z��	−1�, Ae =
�g sin �

�1/2
. �8�

Integrating and applying the no-slip condition gives

u = Ac�h2 − �h − z�2

2
+ Ae

	−1h	+1 − �h − z�	+1

	 + 1
	 . �9�

A similar expression is given in �10�. Weidner and
Schwartz �32� use the Ellis model to describe free surface
flow including the effect of surface tension. We will discuss
this later.

D. Results

The purpose of this section is to ascertain whether the
Ellis model can give similar results to the Carreau model. If
so, then we can use Ellis to describe the flow of any fluid
which is normally described by a Carreau model. Also we
wish to see how well power law fluids compare with the
other models.

We will take the Carreau model as our benchmark and so
use the viscosity and velocities predicted by this model as
correct. Of course there are fluids where the Ellis model

FIG. 1. Comparison of viscosities calculated by the Carreau �dashed�, Ellis �solid�, and power law �dash-dot� models for �a� polystyrene,
�b� aluminum soap, �c� 0.5% hydroxyethylcellulose solution, and �d� blood for the parameter values given in Table I.
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provides a better description; however, if we can make the
Ellis results look like the Carreau model results, then we are
able to do the opposite. The real question is, then, can the
Ellis model match the results predicted by a Carreau model?

We do not present results for free surface flow of molten
polystyrene due to its very high viscosity. In this case we
would require “films” of the order tens of meters to obtain
noticeable flow. Hence, we start with a more practical film of
aluminum soap. Figure 2 shows the velocity profiles pre-
dicted for Newtonian, power law, Carreau, and Ellis fluids
for a film of thickness 8 cm on a slope such that �g sin �
=1000 kg m−2 s−2. As is to be expected from the agreement
in Fig. 1 the Ellis and Carreau models lead to very similar
velocity profiles with a maximum velocity around 6 cm/s
and a maximum of 4% difference. The power law model
provides terrible agreement, with a maximum velocity ap-
proximately half of that predicted by the Carreau model and
even less than the Newtonian result. This is an obvious con-
sequence of the high viscosity prediction. The maximum
shear rate is around 2.5 s−1, so, according to Fig. 1�b�, most
of the flow occurs when the power law model is not appro-
priate. Decreasing the film height increases the difference
between the power law and Carreau models, while the Car-
reau and Ellis models converge. For h1 cm the Carreau,
Ellis, and Newtonian models give virtually the same results.
The power law model has a maximum velocity less than
0.1% of these other three models. For h�20 cm the power
law and Carreau models converge, with a maximum velocity
of around 8 m/s. The Ellis model still gives close agreement.
However, such a high velocity means this is unlikely to be in
a region where the lubrication approximation is still valid.
Similar results are found for polyethylene oxide solution.

Now consider Fig. 3�a�. This shows the velocity profiles
for the different models for a 5 mm thick layer of hydroxy-
ethylcellulose solution, again �g sin �=1000 kg m−2 s−2. We
choose this thickness because it corresponds to a maximum
shear rate of around 40 s−1, which places the results in the
region of worst agreement between the Ellis and Carreau
models �there is around 17% difference in the viscosity pre-

dictions�. Consequently there is a 27% difference in the
maximum velocities. Again the power law fluid shows bad
agreement.

The disagreement between Ellis and Carreau might sug-
gest that one of these models is not always appropriate.
However, the problem can be remedied. Since we are dealing
with thin film, free surface flows we are focusing on flows
with relatively small velocities and shear rates. In this case
we can drastically improve the correspondence between the
Ellis and Carreau models by changing the parameter values.
Since we are assuming the Carreau model provides the cor-
rect result, we start by taking a model of the form

1

�
=

1

�0
�1 + � �

�
�	−1	 , �10�

i.e., of the same form as the Ellis model but now with a free
parameter � as opposed to a shear stress measured at a par-

FIG. 2. Comparison of velocities calculated by Carreau
�dashed�, Ellis �solid�, power law �dash-dot�, and Newtonian �dot-
ted� models for aluminum soap.

FIG. 3. Comparison of velocities calculated by Carreau
�dashed�, Ellis �solid�, power law �dash-dot�, and Newtonian �dot-
ted� models for hydroxyethylcellulose solution with parameter val-
ues from �a� Table I and �b� revised values.
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ticular point for each fluid. If we choose 	=3 and �=6.63,
then we obtain velocity profiles which match to within 3.4%
for a 1 cm thick film �with a maximum velocity of 50 cm/s�.
When the height is 1 mm the correspondence is within
0.02%. At this thickness the power law model is out by 80%.
In effect what we are doing is exchanging the exact corre-
spondence at �=�0 /2 for a better correspondence elsewhere,
in particular, for this study, in regions of low shear rate. In
general this is likely to result in worse correspondence for
the high shear rate region. Figure 3�b� shows the result of
applying the modified model to the 5 mm film. Now the
maximum difference between Carreau and Ellis is 1.3%.

It is interesting to note that in a study of spin coating
Lawrence and Zhou �28� find poor agreement between New-
tonian and Ellis models near the axis of symmetry �where the
shear rate is low� when 	�3. The present analysis and the
revised parameter values appear in keeping with their find-
ings.

The new parameter values were chosen by calculating the
maximum velocity predicted by Carreau and then substitut-
ing this into �9� �with z=h�. This is carried out for a number
of film heights, so we are left with a set of equations to solve
for 	 and Ae=�g sin � /�. The values 	=3 and �=6.63 are
an average of the results obtained.

The viscosity curves for blood, Fig. 1�d�, show that the
power law model predicts a very different viscosity to the
Carreau model. The Ellis model has already been chosen to
give good agreement. If we calculate velocity profiles using
the tabulated values, we find, as expected, terrible agreement
between Carreau and power law for all film thicknesses. This
is easily improved for thick films �assuming Carreau gives
the correct fit� by choosing np=nc and K=0.026. For thin
films the agreement will always be bad.

In answer to the questions posed at the start of this sec-
tion, first we can get good agreement between Carreau and
an Ellis-type model �if not strictly an Ellis model�. Hence we
may proceed to more complex problems using an Ellis-type
model, secure in the knowledge that we will obtain results
similar to if we had used the Carreau model, provided the
shear rate is within the region of applicability.

The power law model, as expected, showed poor corre-
spondence with the other models when the shear rate was
low and it should therefore only be trusted in situations
where the shear rate is high enough for the flow to remain
within the power law regime for most of the region. To be
more precise, if we require the power law flux to be within
r% of the Ellis model flux, then the flow must satisfy

Ap
1/np

np

2np + 1
h�2np+1�/np = �100 − r

100
	Ac�h3

3
+ Ae

	−1 h	+2

	 + 2
	 .

Note that, since the power law flux should always be lower
than the Ellis or Carreau prediction we need only take �100
−r�% rather than �100±r�%.

IV. FLOW IN A CHANNEL

Obvious industrial situations where the flow of a thin film
in a confined channel occurs are flow in a bearing, extruder,

or blade coating. The flow of a power law fluid in a channel
has been investigated by many authors, see �22–24�. In par-
ticular �24� gives a comprehensive overview of research into
the problem. Pressure-driven flow of an Ellis fluid between
two parallel plates is discussed in �3, pp. 217–218�, �10�.

In this situation the flow is subject to no-slip at the top
and bottom surfaces. The driving forces are pressure gradient
and movement of one or both surfaces; without loss of gen-
erality we can assume only the lower surface moves. If we
denote the velocity of this surface by W, then our boundary
conditions are

�u�z=0 = W, �u�z=h�x� = 0.

A. Power law fluid

For this problem we take a different route to the method
of �24�. We use a method that is simpler, avoiding the diffi-
culties with modulus signs, but not as comprehensive. To do
this we consider situations where there is at most one turning
point in the velocity profile within the channel. We are there-
fore unable to deal with situations where there is backflow, in
which case the analysis of �24� should be used. However, the
following method covers many of the situations likely to be
encountered in practice, see �3, pp. 217–218�.

For a power law fluid the flow is governed by

K�uz�np−1uz = px�z − zm� �11�

where zm is the coordinate where uz=0. To drive flow in the
positive x direction px�0. If the bottom surface is moving
with speed W�0 and the top is stationary, then there are two
possible scenarios. First, the velocity increases through the
film until it reaches a maximum �at z=zm�, then decreases.
Second, u decreases monotonically �in this case zm will occur
outside of the physical domain�. We consider the first case
since this covers the second. Also, if the turning point is not
within the channel, then the problem of infinite viscosity is
not encountered and so this situation will not highlight the
perils associated with using the power law model.

When z�zm, then uz�0 and

uz
np = �−

px

K
	�zm − z� . �12�

Integrating and applying u�0�=W give

u = W +
np

np + 1
�−

px

K
	1/np

�zm
�np+1�/np − �zm − z��np+1�/np� .

�13�

When z�zm, then uz�0 and

�− uz�np−1�− uz� = �− uz�np = �−
px

K
	�z − zm� . �14�

Integrating and applying u�h�=0 give

u =
np

np + 1
�−

px

K
	1/np

��h − zm��np+1�/np − �z − zm��np+1�/np� .

�15�
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The fluid flux in the channel is Q=Q1+Q2 where

Q1 = �
0

zm

udz = Wzm + �−
px

K
	1/np npzm

�2np+1�/np

2np + 1
, �16�

Q2 = �
zm

h

udz = �−
px

K
	1/np np�h − zm��2np+1�/np

2np + 1
. �17�

Adding these two equations allows us to obtain an expres-
sion for the flux in terms of the pressure gradient

Q = Wzm +
np

2np + 1
�−

px

K
	1/np

�zm
�2np+1�/np + �h − zm��2np+1�/np� .

�18�

The position where the velocity gradient is zero is deter-
mined by continuity of u�zm�:

u�zm� =
np

np + 1
�−

px

K
	1/np

zm
�np+1�/np + W

=
np

np + 1
�−

px

K
	1/np

�h − zm��np+1�/np. �19�

For an incompressible fluid the flux must be constant. We
consider the case where the flux is prescribed, similar to the
method described in �23�. Of course it is possible that the
pressure is known at either end of the region not the flux, in
which case �18� must be treated as a form of Reynolds equa-
tion which is subject to pressure boundary conditions at ei-
ther end. The flux then becomes a parameter that must be
adjusted to allow both conditions to be satisfied.

However, given a flux Q, Eq. �18� determines the pressure
gradient as a function of zm, at any point x �recall h=h�x��.
Substituting the pressure gradient into Eq. �19� then gives a
single equation for zm. Once zm is determined the pressure
gradient and hence the velocity are also known. Note, in the
case W=0, Eq. �19� has the single real solution zm=h /2 and
we only need solve �18� to determine px. If np=1 and K
=�0, then this gives px=−12�0Q /h3, which is the classical
Newtonian result.

B. Ellis fluid

We carry out a similar analysis for an Ellis fluid. The flow
is governed by

�0uz = px�z − zm��1 + � px�z − zm�
�

�	−1	 . �20�

When z�zm, then uz�0 and

�0uz = − pxzm − z + �−
px

�
		−1

�zm − z�	� . �21�

Integrating and applying u�0�=W give

u = W −
px

�0
 zm

2 − �zm − z�2

2
+ �−

px

�
		−1zm

	+1 − �zm − z�	+1

	 + 1
� .

�22�

When z�zm, then uz�0 and

�0uz = pxz − zm + �−
px

�
		−1

�z − zm�	� . �23�

Integrating and applying u�h�=0 give

u = −
px

�0
 �h − zm�2 − �z − zm�2

2

+ �−
px

�
		−1 �h − zm�	+1 − �z − zm�	+1

	 + 1
� . �24�

Integrating again and adding the expressions for Q1 and
Q2 give

Q = Wzm −
px

�0
 �h − zm�3 + zm

3

3

+ �−
px

�
		−1zm

	+2 + �h − zm�	+2

	 + 2
� . �25�

This is nonlinear in px so, unlike the power law case, we
cannot write an explicit expression for px in terms of the
other variables.

The position where the velocity gradient is zero is again
determined by continuity of u�zm� and reduces to

W =
px

�0
 zm

2 − �h − zm�2

2
+ �−

px

�
		−1zm

	+1 − �h − zm�	+1

	 + 1
� .

�26�

From Eq. �26� we can obtain an expression for �−px /��	−1,
which may be substituted into �25� to give a linear equation
for px, with solution

px

�0

=

W�zm −
	 + 1

	 + 2

zm
	+2 + �h − zm�	+2

zm
	+1 − �h − zm�	+1	 − Q

� �h − zm�3 + zm
3

3
−

	 + 1

	 + 2

zm
	+2 + �h − zm�	+2

zm
	+1 − �h − zm�	+1

zm
2 − �h − zm�2

2
	 .

�27�

We can then substitute this back into �26� to obtain a rather
unpleasant equation that requires solving numerically for zm.

When W=0 Eq. �26� has the single solution zm=h /2 and
Eq. �25� determines px. The Newtonian limit is retrieved
when �→�.

C. Results for channel flow

In the following we consider only the simplest case,
where W=0, since this sufficiently illustrates the general
form of results. We fix Q and calculate the velocity and
viscosity profiles. The pressure gradient to drive this flow is
then given by either Eq. �18� or �25�.

The velocity and viscosity profiles for molten polystyrene
are shown in Fig. 4. The parameters have been changed from
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those quoted in Table 1 of �4� to nc=np=0.4 and K
=�0�nc−1. This makes the power law curve identical to Car-
reau for uz�0.1. We also use the modified version of the
Ellis law, with 	=3.164 and �=1.373
105. These values
result in close agreement with Carreau for uz�10; previ-
ously the models diverged for uz�0.5. For this simulation
the flux is Q=1.25
10−5 m3/s. The shear rate reaches a
maximum of around 0.05 s−1 at the channel walls, so from
Fig. 1�a� it is clear we are operating around the transition
region for the viscosity models. The Ellis and Newtonian
velocities are relatively similar and the power law shows
significant flattening in the central region, where it ap-
proaches plug flow. Since we have fixed the flux as the same
for each fluid we should not be surprised at how close the
profiles are. However, it takes different pressure gradients to
drive each one. We can see from the viscosity curves that the
power law fluid has a high viscosity for much of the domain,

the Newtonian is next highest, and the Ellis model ranges
between 0.7�0 to �0. The pressure gradient to drive the New-
tonian fluid is 4.8
106 Pa/m, for the power law fluid it is
4.6
106 Pa/m, and for the Ellis it is 3.8
106 Pa/m. Since
we know we are in a regime where the Ellis model is close to
the Carreau one �which we take as our benchmark� we can
see that the pressure gradient driving the power law fluid is
out by around 22%. The discrepancy increases as the flow
rate decreases. For example, if we decrease the flux by a
factor of 2 the power law pressure gradient is out by 60%.
Increasing the flow rate causes the Ellis velocity profile to
flatten out at the center, becoming more like the power law
fluid. This is shown in Fig. 5. Here we have a flux of
0.0031 m3/s; the maximum shear stress is around 10 �recall
the viscosity models diverged past uz=10�. The pressure gra-
dient required to drive the Ellis fluid is 3.54
107 Pa/m; the
power law is 18% higher, while the Newtonian fluid is out by
a factor of 100. Given the close correspondence between the
Ellis and power law viscosities over much of the channel, it

FIG. 4. �a� Velocity profiles predicted by Ellis �solid line�,
power law �dash-dot line�, and Newtonian �dotted line� models
for molten polystyrene with h=5 cm, L=50 cm, and Q=1.25

10−5 m3 s−1 and �b� corresponding viscosity.

FIG. 5. �a� Velocity profiles predicted by Ellis �solid line�,
power law �dash-dot line�, and Newtonian �dotted line� models
for molten polystyrene with h=5 cm, L=50 cm, and Q
=0.0031 m3 s−1 and �b� corresponding viscosity.
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is surprising that there is such a large difference in pressure
gradient. Clearly, the central regime where �p→� has a sig-
nificant effect on the flow.

We show an example for aluminum soap in Fig. 6. The
general conclusions are the same as for molten polystyrene.
At low shear rates the power law model requires a much
higher pressure gradient to drive the flow than the other two
models. As the flux increases the power law and Ellis models
converge. The Ellis model profile becomes less like the New-
tonian parabola and flattens in the center. The result shown in
Fig. 6 is for a moderate shear rate, uz�3. This is around the
region where the viscosities diverge in Fig. 1�b�, so we
would expect a great difference in the viscosity variation
through the profile. This can be seen in Fig. 6�b�. However,
in this case, considering the large viscosity difference over
most of the channel, the pressure gradients are quite close.
For the Ellis fluid it is around 7.5
103, for the power law it
is only 14% higher. The Newtonian pressure gradient is out
by a factor of 2.

Finally, consider the flow of blood. The Ellis and Carreau
model parameters have already been chosen to give good
agreement. The power law parameters are changed to np
=nc=0.3568 and K=0.0259. The general conclusions are the
same as for the previous cases. A typical result is shown in
Fig. 7. This case has a maximum shear rate, uz�10 s−1,
which is well into the region of correspondence between
Ellis and power law behavior. In the central region, z
� �0.3,0.7�, the shear rate is O�1� and the viscosities di-
verge. However, the Ellis and power law velocities are re-
markably similar and the applied pressure gradient is within
7%. The Newtonian pressure gradient is out by a factor of 6.

As in the free surface situation we can write down a re-
lation between the fluxes predicted by power law and Ellis
models to quantify the error in the power law prediction. The
appropriate fluxes are given by Eqs. �18� and �25�. So, for a
given pressure gradient we can determine when the power
law flux differs from the Ellis flux by r% through the relation

FIG. 6. �a� Velocity profiles predicted by Ellis �solid line�,
power law �dash-dot line�, and Newtonian �dotted line� models for
aluminum soap with h=2 cm, L=2 cm, and Q=8.9
10−5 m3 s−1

and �b� corresponding viscosity.

FIG. 7. �a� Velocity profiles predicted by Ellis �solid line�,
power law �dash-dot line�, and Newtonian �dotted line� models for
blood with h=2 mm, L=4 cm, and Q=3.6
10−6 m3 s−1 and �b�
corresponding viscosity.
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Qp= �100−r�Qe /100. Note, except in the case where W=0,
the point zm does not necessarily coincide for each model and
must therefore be calculated separately.

V. FREE SURFACE FLOW WITH SURFACE TENSION

Finally, we briefly describe how the free surface flow
equations may be modified to include surface tension.

Now we assume that the film is not flat and modify Eq.
�4b� to give

px = cos �hx − �hxxx, �28�

where � is the surface tension. Following standard thin film
theory �1,2� we will arrive at a mass balance of the form

�h

�t
+

�Q

�x
= 0, �29�

where the flux depends on the fluid in question.
For both power law and Ellis fluids the velocities are the

same as given previously by Eqs. �6� and �9�, provided the A
terms are modified to include the pressure gradient �28�,

Ap →
�g sin � − px

K
, Ac →

�g sin � − px

�0
,

Ae →
�g sin � − px

�
.

The appropriate fluxes to substitute into Eq. �29� are

Qp =
Aph�2np+1�/np

2np + 1
, Qe = Ac�h3

3
+ Ae

	−1 h	+2

	 + 2
	 .

A classic problem in thin film theory is the stress singu-
larity that occurs at the moving contact line with a Newton-
ian fluid. This is the physical manifestation of the contradic-
tory boundary conditions which require the fluid velocity to
be zero on the substrate while the free surface is in motion,
even where the free surface height tends to zero. Numerical
studies on both power law and Ellis fluids in the presence of
a moving contact line do not show this stress singularity
�12,14,32�. Presumably this occurs because as the stress in-
creases the viscosity decreases and theoretically at infinite
shear stress the viscosity is zero. The balance between these
two effects results in the removal of the singularity.

VI. CONCLUSION

It is well known that power law fluids are far from ideal
when modeling fluid flow at low shear rate. However, since
an attractive mathematical model may be obtained, their use
is widespread in thin film flow. One of the main purposes of
this paper was therefore to investigate how appropriate the
use of power law fluids is when dealing with thin film flows
where the shear rate becomes zero. A second aim was to
present an alternative form that still permits analytical
progress. To achieve these aims we chose the Carreau model
as our benchmark, since this provides a good approximation
to the viscosity of a large number of non-Newtonian fluids.

First, the viscosity was calculated for a number of stan-
dard fluids. Power law, Ellis, and Carreau models were com-
pared. This allowed us to adjust published parameter values
to obtain a good correspondence with Carreau �over the ap-
propriate region of parameter space� and hence lead to a
better comparison of the flow in subsequent sections. The
Carreau and Ellis models do not always coincide around the
transition region from Newtonian to power law behavior. It
was shown that this problem may be overcome by a slight
modification to the model. This modification is of particular
use to the present study where low shear rates are of interest,
although, in general, it will provide worse agreement at very
high shear rates.

The results for free surface flow show clearly that when
the shear rate is low, the power law model can give wildly
inaccurate results. The �modified� Ellis model led to very
similar results to Carreau and so it appears that this type of
law is appropriate for thin film flows. Of course a truncated
power law model �3, p. 209�, �15� would give better results
than a straight power law model, however, the objections
concerning the parameter value estimation still hold and, un-
less there was a very sharp transition region, there would still
be poor agreement around the critical shear rates. Further, a
cutoff model requires the use of different equations in differ-
ent regions and the user must keep track of when to switch.
Hence the simplicity of the single power law equation is lost.

Having shown the Ellis model provides very similar re-
sults to Carreau, we subsequently dropped the Carreau model
when analyzing channel flow. In this case it was shown that
for a fixed flux the power law model could require a much
higher pressure gradient to drive the flow. Conversely, a
fixed pressure gradient would lead to different fluxes be-
tween power law and Ellis models. In �4, p. 966� it is stated
that in most industrial polymer processing applications the
shear rates fall within the domain of the power law regime.
However, in channel flow this may be just at the walls and
certainly cannot be true throughout the channel. The results
shown in Sec. IV C demonstrate that even when the shear
rate is relatively high at the wall, the presence of the central,
low shear rate region can significantly affect the pressure
gradient or flux.

To summarize, clearly great care should be exercised
when applying the power law model, particularly when the
shear rate is low. Sensibly, it should only be used in situa-
tions where the majority of the flow is subject to a shear rate
significantly above the transition range. A comparison of the
fluxes predicted by the different models, as discussed at the
end of Secs. III D and IV C, seems a reasonable way to carry
out this check.

The power law model has been preferred over other vis-
cosity models by theoreticians due to the simplicity of the
resultant flow equations. However, we have shown that the
power law model can give very inaccurate results when ap-
plied to physically realistic flows, particularly when the shear
rate is low. The Ellis model �or the modified version� has
been shown to agree well with Carreau; it also leads to rela-
tively simple governing equations and should provide plenty
of questions to satisfy even the most ardent theoretician.
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